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An algorithm has been developed for handling the difficulties encountered in modeling 
subsonic combusting flow problems such as the disparity of timescales, and the highly 
nonlinear processes such as radiation, turbulence, and exothermic Arrhenius chemical 
kinetics. This scheme is an extension of the block implicit (BI). Douglas-Gunn ADI scheme 
modified to include the basic strategies of the stiff ODE and nonlinear equation solvers. For a 
given time step, the nonlinear finite difference equations are iteratively solved by a linear 
combination of a damped Newton-Raphson and steepest descent method. Even though the BI 
method is, without source terms, unconditionally stable according to linear theory, sufficiently 
large source terms arising from exothermic chemistry may render such a scheme only 
relatively stable. The time step acts as a damping parameter for a Newton scheme which is 
adjusted accordingly for solution trajectories in regions of high as well as mild nonlinearity. 
This algorithm reduces identically to the Briley-McDonald and Beam-Warming noniterative 
BI scheme if the solution trajectory is sufficiently linear. Iteration is only used if the norm of 
the residual errors of the finite difference equations exceeds a given tolerance. This algorithm 

, has been applied to coal dust flames and the burning fuel wick problem with and without the 
influence of the gravitational acceleration. Even though the combustion chemistry is oversim- 
plified, the physics appears to be properly modeled because there is excellent qualitative and 
quantitative agreement of the calculations with experimental observation. 

I. INTRODLJCT~OX 

Mathematical effort in cornbusting fluid flow has been limited due to the numerical 
difficulties associated with the highly nonlinear processes such as Arrhenius chemical 
kinetics, radiation, and turbulence superimposed upon fluid flow. Traditional explicit 
schemes [l, 21 become inefficient in typical combustion problems because the 
stability requirement is more stringent than the accuracy requirement. 

The approach taken in this paper is to combine the best features of the block 
implicit (BI)-ADI partial differential equation (PDE) scheme with the best features of 
the stiff ordinary differential equation (ODE) schemes and the damped 
Newton-Raphson and steepest descent nonlinear equation schemes. The resulting 
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algorithm for the highly nonlinear PDEs for combustion problems is very robust and 
efficient over a very wide range of phenomena. 

The paper is organized in the following manner. Section II will present a review of 
implicit PDE schemes applied to combustion phenomena, showing the evoiution of 
thought up to the present method. Section III presents an outline of the finite 
difference scheme used in this paper. Section IV first reviews the standard BI-AD1 
scheme, and then extends it by incorporating it with the principal features of the stiff 
ODE schemes. Section V discusses the necessity for dynamic time step controi for 
robustness and optimal efficiency. 

In Section VI, the problem of attaining the deterministic physically realizable 
solution among the multiple solutions possible from the nonlinear PDEs is discussed. 
Section VII discusses computational efficiency questions for treating the detailed 
chemistry of flames. Finally, Section VIII presents the results of a numerica! 
simulation of a two-dimensional burning wick problem in a gravitational field as the 
system evolves from ignition to steady state. 

II. REVIEW OF COMBUSTION GASDYNAMIC SCHEMES 

Most of the developmentai work in the numerical solution of multidimensional 
PDEs has had direct application to aerospace problems. This section will trace the 
evolution of thought as successive improvements have been made in combining well 
proven gasdynamic schemes with combustion. 

The ICE scheme of Harlow and Amsden ]3] has been the basis of several implicit 
multidimensional methods. In this method, the mass and momentum conservation 
equations are solved iteratively as a set of coupled equations by the method of 
successive substitutions (MSS). The RICE 14.5) and APACHE (6) codes which are 
stablized by various forms of truncation error cancellation are codes based on the 
ICE scheme used for cornbusting flows. One of the primary disadvantages of the 
APACHE [6] d co e is that the iteration scheme is terminated after an upper iteration 
bound is reached whether or not convergence is achieved. 

Westbrook [7] modified the ICE and RICE methods to handle strongly exothermic 
chemical reactions. Instead of using the adiabatic pressure corrections of the RICE 
code, he modified the pressure corrections to include temperature and composition 
changes. In his opinion, during highly exothermic combustion, the corrections due to 
energy and composition must be solved simultaneously with the mass and momentum 
corrections. 

Keller ]8] first proposed using an implicit Newton-Raphson scheme for solving 
the two point boundary value problem for systems of nonlinear ODES. Later, he 
19, lo] extended this scheme to systems of nonlinear PDEs. The method of Baum and 
Nfedo ] 111 utilizes a quasilinear iteration scheme for solving two-dimensional fluid 
flow problems in the context of a Peaceman-Rachford AD1 scheme. 

Briley and McDonald [ 12 ] and Beam and Warming [ 13 ] developed a noniterative 
block implicit scheme for treating multidimensional compressible Bow conservation 
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equations. Such a scheme permits time steps corresponding to the convective 
transport time across a computational cell and has overcome the CFL [ 1, 21 sound 
speed restriction by treating the pressure gradients and convective transport terms 
simultaneously and implicitly. The scheme is linearized by a first-order Taylor series 
expansion about the solution at the known time level to produce a set of coupled 
linear FDEs. The Douglas-Gunn [ 141 consistently split alternating direction implicit 
(ADI) procedure reduces a multidimensional problem to a sequence of one- 
dimensional problems. This procedure gives rise to a set of coupled linear equations 
in block tridiagonal form which can be solved by block elimination methods, cf. 
Keller [8]. Gibeling et al. [ 151 developed MINT, a 3-D Navier-Stokes code with 
equilibrium chemistry based on the BI-AD1 scheme developed by Briley and 
McDonald [ 121. 

Within a given PDE time step, some chemical reactions may proceed with very 
little influence on either transport or chemical enthalpy production. That is, the 
timescales of the Arrhenius kinetics and the transport are sufficiently disparate that, 
to a good approximation, transport is essentially frozen within the PDE time step. If 
this is the case, then a time splitting strategy is quite appropriate as recommended by 
Oran et al. [ 16 J and Rivard et al. [S J. Under the assumption that transport may be 
frozen at the old time step value, the PDEs may be rearranged as a system of coupled 
inhomogeneous ordinary differential equations (ODES) depending on the problem 
under consideration, either an analytical or a GEAR-like ODE solver may be used. 

However, in other circumstances, it is quite possible for transport to be intimately 
coupled with chemistry and vice versa. Kee and Miller [ 171 found that hydrogen 
which diffuses very readily in comparison with other chemical species negates the 
assumption that transport is essentially frozen in comparison to chemistry. Chang et 
al. [ 181 using the method of lines technique in modeling the photochemistry of the 
upper atmosphere found that ozone photochemistry was tightly coupled to its 
transport. Consequently, it was more efficient not to use any operator splitting, but to 
solve for both the chemistry and transport simultaneously. 

Recently Kooker [ 19 1 employed the BI scheme to model a propagating 0,-O, 
flame in a confined vessel. He was able to freeze transport, while integrating the 
chemistry. This procedure worked well for 0,-O, flames but Kee and Miller 1171 
found that freezing the transport did not work well if hydrogen was present. For this 
reason, Kooker [ 19 1 found that the noniterative BI scheme was sufficient. Because of 
confinement, the acoustic waves interacted with the flame front to accelerate it. 
Although the BI scheme was stable for a time step greater than the CFL restriction, 
the results of such a calculation gave poor agreement with the experimental flame 
trajectory. However, when At was reduced to the burnt gas CFL limit to follow these 
acoustic interactions, the results were in excellent agreement with the experiment. 

In contrast, Lund 1201 investigated both ignition and flame propagation. Using a 
1-D implicit Lagrangian scheme with an explicit Eulerian remapping and dynamic 
rezoning, he modeled an 0,-O, flame with 3 species and 3 reactions, and a CH,-0, 
flame at 0.05 atm with 15 species and 45 reactions. Both flames were modeled from 
ignition to steady state flame propagation. During the ignition stages, he used time 
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steps ranging from 6 x lo-’ to IO- sec. As the flame approached steady state, he 
used time steps on the order of 3 X IO .- ’ sec. For the 0,-O, flame, he used time steps 
ranging from lo-’ set to account for the initial fast kinetic :ates to come to 
equilibrium, and later used time steps much greater than the CFL restriction in 
contrast to Kooker [ 191, Dywer et ai. [21], and Otey ji2). Lund used a 
Newton-Raphson scheme to iterate the advanced time soiutions to convergence. 
Using the same strategy as the stiff ODE solvers, he attempted to use the old 
Jacobian decomposition as long as possible in order to minimize expensive matrix 
decompositions. He found that a considerable saving of time could be realized if the 
matrix routines were written in assembly language rather than in Fortran. 

In countering the reluctance of many to even consider implicit techniques because 
the inversion of large matrices is involved, Lund has shown, at leas? for the problems 
he has considered, that the time spent in calculating the physics is comparable to :he 
rime spent in the assembly language matrix decomposition routines. 

Bathe and Cimento ]23 j considered Newton-like iteration schemes to solve the 
trapezoidai implicit response finite element equations of structural mechanics. They 
argued that one iteration step schemes resulting from the linearization of a 
configuration at the time I are only accurate provided the load increments or time 
steps are sufficiently small. Because of cost considerations. one endeavors to use as 
large a time step or load step as possible. Errors resulting from linearization zbout 
the time t may become quite large, and the error accumulation can lead to gross 
errors or instability. Hence, iteration about the new time solution, they concluded. is 
desirab!e at all load and time steps. 

From this brief literature survey, a progression of thought can be found treating 
gas dynamics with combustion. Namely, the conservation equations are strongiy 
coupled. an implicit formulation is highly desirable. and iteration of the implicit finite 
difference equations is necessary. The most robust of the schemes is the one 
developed by Lund 120) who used a Lagrangian-Euierian implicit scheme l.vich 
Newton-Raphson iteration. Lund has shown that the time spent in matrix algebra is 
comparable ‘to the time spent calculating the physics and chemistry, at least in onc- 
dimension. 

This paper will use the block implicit-AD1 scheme as a starting point for 
multidimensional combusting flows and introduce a modified type of 
Newton-Raphson iteration which is more powerful than the usual Newton-Raphson 
scheme and apply it to one- and two-dimensional combusting flows prior to. da-ing? 
and after ignition. 

III. THE FINITE DIFFERENCE SCHEME 

The numerical modeling of chemically reacting fluid flow problems is complicated 
by such factors as: (1) the diversity of the time constants, and (2) the possible 
numerical instabilities generated by the numerical truncation errors. The full set of 
equations is given in the Appendixes. In abbreviated form, the set of L governing 
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PDEs, Y, in terms of the dependent variables in conservative form, @, has the 
structure 

Y(!zJ) = as/at + H(Q), 
H(Q) = Ox(@) t O,(@) + SC@), (1) 

where V is the vector representative of the residuals, and where S is the vector 
representation of all the source terms and the cross derivative terms of the viscous 
dissipation; 0, and 0, are operators representing pressure gradients, convective flux 
divergences, and physical diffusion along the x and y axes, respectively, having the 
forms 

0, = 2F/2x - 2/2x[a,2(JX)/2x], (2) 

0, = ~G/&J - ~/@+J,WY)/SI, (3) 

F and G are column vectors representing fluxes in conservative form in the x and y 
directions, and 2(Jx)/2 x and 2(JY)/2y and o, and u, are the respective diffusive 
fluxes and coefficients along the x and y axes. 

The solution is discretized by grid points having spacings, Ax and Ay, in the x and 
y directions, respectively, and an arbitrary time step, At. The subscripts i,j and the 
superscript n refer to the grid points, x,, u,, and t”. Thus 4;; denotes #(xi, yj, t”). 

In this paper, a trapezoidal time marching scheme of maximum order 2 was used: 

Y(~ij) = [ ~~+ ’ - @j’,] t At{ OH’(@;+‘) t (1 - 0) H’(@;)) = 0 

and (4) 

H’ = 0; + 0; + S, 

where 0 is a parameter which varies between zero and one, 0 < 0 < 1. 0: and 0; are 
selective finite difference operators which give rise to a three-point spatial differencing 
approximation for the physical diffusion and the pressure gradient terms. When 01 
and 0; operate on the convective portion of the fluxes, F and G, respectively, the 
following donor-cell type scheme was used [2]: 

O:(F,)=(1/2AX)[(F,+,,/-F,-,,j)- iE+(Fi+l,j-Fi.j) 
-~-(FI,I-F~-~J)II~ (F = pu, pd, etc. }, (5) 

where the terms in brackets represents the upwind differencing contributions and are 
akin to a stabilizing numerical diffusion, and where 

E* = @t/Ax)@,, 1.j •t u,# if F refers to the convective term 

=o if F refers to the pressure term. 
(f-5) 
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If all the L finite difference equations for 0 2 f together with the end point 
boundary conditions are solved simultaneously, one recognizes a block tridiagona! 
structure of the finite difference equations. 

In this paper, a nonstaggered mesh system was used in contrast to the staggered 
mesh systems of the ICE codes. Since either system requires linear interpolation for 
flux formulations, a staggered mesh system does not appear to have any distinct 
advantage except at wall boundaries. 

In a premixed flame, the characteristic length across the flame front is quite short. 
Consequently, very fine spatial resolution is required for accurate modeling. Another 
consideration is the speed at which a flame front travels relative to sonic disturbances 
in deflagrations. Computationally, it is desirable to use time steps comparabe to the 
flame front motion rather than sonic disturbances if sonic disturbances are unim- 
portant. But there exist situations in which acoustic waves interact with the flame 
front, cf. [ 19, 24, 251. This paper is, however, limited to flows for which such 
interactions are unimportant. 

In summary, the important timescales of interest in unconfined highly transient 
chemically reacting fluid flow problems are the times: (a) to traverse the smallest 
computational cell by convection, (b) the fastest characteristic diffusion time across a 
diffusion length, 1, (c) the adiabatic self-heating time of chemical enthalpy production 
(and (d) the characteristic sonic time across a cell for significant pressure gradients), 
These timescales assume all the processes are decoupled which is not true, in general. 
A lower bound on the timescale, assuming decoupling, is given by 

At < min 

(7) 

where y = cP/c,, is the effective physical diffusion length, 1= 1 Q/V@!, CJ is the 
corresponding physical diffusion coefficient, and u and u are the convective velocities 
in the x and y directions, respectively. The last term in Eq. (7) attempts to sense any 
significant pressure gradients (in the limit of no flow and no pressure gradient, the 
timescale tends to infinity) and approximates the CFL condition. This method was 
used successfully in 1251, but has not been tested extensively. 

Associated with any finite difference scheme are the problems of truncation errors. 
Sometimes, the numerical truncation errors in the presence of large gradients behave 
like a large positive numerical diffusion error which may be orders of magnitude 
greater than the physical diffusion. The cell Reynolds number problem discussed bjr 
Roache [2] or the negative destabilizing diffusion errors discussed by Rivard er al. 
14 ] may become large enough to drive a numerical scheme unstable. If the numerical 
diffusion becomes too large, then either the spatial or temporal mesh or both should 
be refined. The literature contains a variety of recipes for treating the undesirable 
effects of numerical diffusion, and one such review has been recently presented by 
McDonald [ 261. 
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The approach used in the calculations to be presented later follows the ideas of 
Rivard et al. 141 and Chien 1271 who added terms to the FDEs in such a manner that 
the modified equations have minimized the overall truncation errors. There are two 
sources of numerical diffusion: the spatial truncation errors, ERR,, which arise from 
the finite difference treatment of the convective terms, and the temporal truncation 
errors, ERR,, arising from the trapezoidal time marching scheme. If the donor cell 
scheme was not used, 

However, this velocity dependent error is accounted for by the donor cell 
differencing scheme, cf. Eq. (5). 

ERR, = (20 - l)[(A%‘,), + (B2@,JY + (AM’,), + (f?A@,),](dt/2) + ..-. (9) 

Note that when 0 = { which corresponds to the second-order accurate scheme, the 
lowest order terms of ERR, vanish. McDonald 126) recommends that the diffusive 
cross derivative terms be treated explicitly with no serious loss of stability, and such 
terms in this paper will be lumped into ,S(#z) for convenience. To ensure against the 
possibility of truncation error diffusion errors arising from the higher-order terms, a 
small amount of residual positive numerical diffusion was retained. This was done by 
adding a small term, V, to the time splitting parameter, 0, so that 

O=ffv, (10) 

where v = 0.02 * D and D is the smallest diffusion coefficient expressed in dimen- 
sionless form. Note that by retaining a small amount of positive numerical diffusion 
even the conservation of mass equation is cast into parabolic form. 

The module just described for treating numerical diffusion can be readily replaced 
by the flux corrected transport method of Boris and Book 1281; the tensor viscosity 
method of Ramshaw and Dukowics 161; or the fourth-order filtering method of Beam 
and Warming [ 131. However, the best remedy for the truncation error problem is 
adequate grid resolution when needed. Dwyer et al. 1211 presented an adaptive coor- 
dinate transformation which automatically adjusts itself to a dependent variable 
gradient as the system evolves to ensure adequate spatial resolution. Concurrently, 
Lund [20] developed a dynamic rezoning technique which gives very fine spatial 
resolution in regions of steep gradients, but also gives gradually coarser resolution 
away from such regions. 

IV. AN ITERATIVE BLOCK IMPLICIT-AD1 ALGORITHM 

It was the author’s experience that the noniterative BI-AD1 scheme was inadequate 
in treating a wide range of combustion problems unless prohibitively small time steps 
were used. In this section, the nonlinear truncation errors which could be 
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destabilizing are examined in the advanced time solutions. In a manner similar to the 
Gear [29, 301 schemes, such errors are kept under control thus rendering the 
modified BI-AD1 scheme more robust. The remainder of this section wil! discuss the 
efficiency of various iteration schemes which is essential to the overaii modified BI- 
ADI scheme. 

Carver (3 1 ] attributes the vitality of the stiff ODE algorithms to the implicit finite 
difference formulation, the use of Newton-like iteration schemes to solve the 
nonlinear FDEs, and the step length control based on the conditioning of :he 
Jacobian, i.e.. the rate of convergence. Recently, Beam and Warming 132~-34/ 
discussed the importance of developing the methods and analyses adopted from the 
ODE methods that can be directly applied in the development of efficient stable PDE 
algorithms. 

The basic motivation for solving ODES and PDEs by an implicit time marching 
scheme is to circumvent the explicit stability requirement which may be orders of 
magnitude more restrictive than physical accuracy requirements. Because larger time 
steps are permitted in implicit schemes, the nonlinear truncation errors may become 
very large. Just as the stiff ODE solvers introduce a variation of the 
Newton-Raphson (NR) scheme to bring the nonlinear truncation errors under 
control, so will the NR scheme be introduced to the BI-AD1 scheme rendering it 
suitable to a wider class of problems. 

The basic noniterative BI-ADI technique of Briley and McDonald 1 i2] and Beam 
and Warming 113 ] replaces the PDEs by an implicit (0 > f) trapezoidal time 
marching scheme whereby all the terms involving nonlinearities at the advanced time 
steps are linearized by a Taylor expansion at the known time Ieve!, and spatial 
differencing is introduced. To solve the multidimensional problem. an ADI scheme. 
using the full time step rather than fractional time steps. is introduced w<hich 
successively approximates the true time advanced solutions by successively including 
more spatial transport terms at the advanced time step. 

The system of PDEs to be solved has the structure 

which is approximated by the trapezoidal time marching scheme: 

yl(@n~- I) = @“‘I -~“+dt(OH’(~““)+-(l-O)H’(~“)}=o, (4) 

where 

H’(@)=H(@)-(20 +K- I)* [(z‘i2@;),+(~2@y)y 

+ W@,L + w@,),l@~/2) (1“ 1, 

and K is a parameter which counteracts the negative destabilizing numerical diffusion 
and reduces excessive positive diffusion, cf. Rivard et al. [4, 51. 
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In the BI scheme, the problem is linearized by expanding H’“+ ’ about W, and by 
replacing 

At g -S@“+‘(l), 
( 1 (12) 

where 

s@“+‘(l)= @n+l(l) - CD”. (13) 

These approximations result in the following form of the residual: 

Y/"+'=J6~"-'(1)+dt(~'n)+ $&zPs 
( 

22H'g@ +...z(), 
) 

(14) 

where 

i?H’ 
J=ItAtO,,, 

I is the identity matrix, and the underlined terms are the higher-order nonlinear trun- 
cation errors, corresponding in the BI scheme to the higher-order tempera1 truncation 
errors, ERR,, . 

Neglecting the nonlinear truncation errors, the BI scheme yields the correction 

d@“-‘(l) = -J-‘(At H’“) (16) 

so that 

@n+](l) = CD” + &D(l)““. (17) 

For the noniterative scheme to be accurate, !P must be linear about @“, and Eq. (14) 
is an accurate approximation to Eq. (4). Y is said to be sufficiently linear, if the 
Euclidean norm of !P, given by Eq. (4) using the noniterative value of @“’ ‘( 1) from 
Eq. (17), is less than some tolerance, i.e., 

jl !P(@(l))(J, < E = 10m6. (18) 

If this test fails, then !P is said to be nonlinear. Equation (16) for obtaining ~cP’~ ‘(1) 
requires a formidable matrix inversion effort in two or three spatial dimensions. 
However, &D” + ‘( 1) may be obtained by a series of simpler block tridiagonal 
problems which approximates Eq. (16) by a consistent sequence of simpler problems. 

First, solve for an approximate 6@* during the x sweep in which the transport 
terms are totally explicit along the y coordinate, but partially implicit along the x 
coordinate. 

s* 6@* = -At H’“, (19) 
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where 

and 

CD* = @” + cm*, 

Using the updated @*, perform the y sweep solving 

J** &j** = -At 
I 

80 H’” + @ 2 a~ cm” ) 
I 

J*“=I+AtO 

which is consistent with Eq. (14) yielding 

If 0 = 4, a second-order accurate scheme is used. A naturai extension of the BI-ADI 
scheme is the introduction of a Newton-like iteration scheme which controis the 
nonlinear truncation errors by both time step control and contractive norm reduction, 
but not solely by time step control. The iterative extension of the noniterative BI-ADI 
scheme is justified if the total number of arithmetical operations with iterations using 
a larger time step is less than that of the noniterative scheme using a smaller time 
step with many time cycles. 

In contrast to the BI scheme, the nonlinear terms in this paper are linearized about 
the current iterate, @“*i(k), of the advanced time solution vector, 

H’jO(k+ l)]=H’[@““(k)]+ cF)&D(k+ 1) 

+ ;d@‘(k -!- 1) C$$) 6@(k $ 1) + .‘. 

so that 

6@(k T I) -i- ... cz 0, 

where 

‘u@“+‘(k)) 2: @“+‘(I?) - @” + At{OH’[@““(k)] $ (I - 0) H’[@J”]}~ 

6@(k + 1) = P-r@ + 1) - W”(k). 
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Note that the iterative extension involves a consistent sequence of approximations to 
the original residual vector Y, cf. Eq. (2), including both transport and source terms 
at the advanced time level. 

The iteration scheme can be initialized by choosing the first iterate at the advanced 
time to be the old solution vector, i.e., 

@” + ‘(k = 0) = @“. (28) 

Other initialization schemes are also possible. If the iterative scheme is convergent, 
successive approximations will contract both the norms of the residuals and the 
correction vectors, i.e., 

II WV + ‘(k + 1 ))I1 < II ~~@W))lL (29) 

/I Wk + 1>11 < II S@(k>ll (30) 

reducing the nonlinear contributions to a point where !P is linear about @“*‘(k + l), 
and 

’ (1 YpP+‘(k + 1)>11 < E, (31) 

l/&D”’ ‘(k + l)ll < r. (32) 

Note that if dt is chosen small enough, and if convergence is obtained in one 
iteration, the iterative BI scheme is identical to the noniterative BI scheme. 

The AD1 scheme used here is similar to the BI scheme, except the intermediate 
solutions are iterated to convergence for each sweep. The standard Newton-Raphson 
procedure neglects the nonlinear higher-order corrections from the Hessian. 

For the x-sweep of the AD1 scheme, set Q*(O) = @” and solve 

J*(k) rwyk + 1) = -Y*(k), (33) 

where 

J*(k)=z+dtO I $g (Q*(k)) + g (Q*(k)) 1 , 

P(k) = Q*(k) - @" + Llt(O(0,(@*(k)) + q@"(k))} 
+ (1 - @>{Ox(@") t S(@") + O,(@")}) (35) 

and. 

@"(k t 1) = Q*(k) t cm*(k t 1). (36) 

The iteration continues until 

II Y*(k + 1111 < E. (37) 

II da*@ + 1 >I1 < BY (38) 
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and 

@“(k+ 1)-P@*. 

For the y sweep, set Q**(O) = @*, and solve 

J**(k) &#a*“@ f 1) =-y++(k), 

(39) 

‘(40) 

where 

J”“(k) = I + At 0 s (Q**(k)) + g (Q**(k))/ . (41) 

Y”*(k) = Q”*(k) - ~0’ + At @{0,(@**(k)) t S(@P”*(k)) + O,(@*)j 

-L (1 - 0) At(O,(@“) + O,,(W) t S(V)}, (42) 

@**(k c 1) = Q**(k) + &$**(k + 1). (43) 

The iteration continues until 

!I Y*“(k + l)jl < F. 

))cM*“(k t l)!I < V, 

(44) 

(05) 

and 

r,O**(k+ ]),@**=QJ~-‘. (46) 

Newton’s method is an iterative scheme in which each step involves the solution of 
a linear problem. When it converges, there is a successive norm reduction of the 
correction which proceeds at a quadratic rate, i.e., 

11 &D(k + 1)11 < const l(&D(k)j!*. (47) 

Consequently, in a convergent condition, the nonlinear truncation errors wiil be 
reduced more effkiently by both time step reduction and iteration than solely time 
step reduction, cf. Briley and McDonald 135 J. 

Briley and McDonald 135) pointed out that an iterative BI scheme is justified if the 
nonlinear truncation errors, ERR,, , are greater than the temporal truncation errors. 
Reducing At reduces ERR, and ERR,, simultaneously whereas successive iterations 
rapidly reduce ERR,, , while leaving ERR, unaffected. However, iterations are more 
efficient than reducing At if ERR,,, is greater than ERR,. 

The efficiency of the IBI scheme depends upon the conditioning of the Jacobian. 
The system J6@ = -Y is said to be ill conditioned if small errors in J or Y yield 
large errors in 6@. Following Goult et al. 1361, a useful bound on the convergence of 
the correction vector is given by 
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where 

6J= 

and 

Lw= Y(k + 1) - Y(k) 

K = II J- ’ 11 . II JII, 

(49) 

(50) 

(51) 

is the condition number. The smaller the condition number, the smaller will be the 
errors in &#J as a result of inaccuracies in J or !l? 

Following Ortega and Rheinboldt [37], a matrix which is diagonally dominant is 
invertible. A well conditioned matrix has the ratio of absolute value of its largest to 
smallest eigenvalue near unity and dampens errors in Y or J rapidly, so that 

K II ~JII/II JII 4 1. (52) 

Furthermore, the matrix which arises from the Crank-Nicholson finite difference 
formulation of the parabolic heat conduction PDE is an example (37) of a well 
conditioned, diagonally dominant, positive definite matrix. Likewise, it can be shown 
that the hyperbolic portion of the conservation equations gives rise to well 
conditioned matrices if the convective terms are differenced implicitly (0 > 4) and if 
the time step is within the convective limit. When a purely transport PDE involving 
convection and physical diffusion is differenced implicitly, it gives rise to a well 
conditioned diagonally dominant matrix. The effect of the destabilizing numerical 
truncation error diffusion terms is to shift a well conditioned matrix toward ill 
conditioning. Such errors must be kept within bounds by proper differencing 
techniques and adequate gridding. 

Because the NR scheme involves a system of linear equations at each iterative step, 
the conditioning of the Jacobian matrix is just one important aspect. Convergence to 
a unique fixed point solution, @“+ ‘, is guaranteed by the Kantorovich theorem [37], 
as follows. If there exist upper bounds for the following quantities, 

(a) IIJ(O)-‘!J=(I(Z+AtO(aH’/a~),)-‘Lima, 

(b) (18ZY/a@211 = At 0 l(&+X#‘*!I Q w, (53) 

(cl ll~W)ll= II@““(1> - @“(O)ll <P 

and if 
h=au$<?, (54) 

then the rate of convergence to a unique fixed point @“+I proceeds quadratically 
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In contrast, the MSS iteration scheme which is an “explicit iteration” scheme, as 
applied in the RICE [4,5 1 and APACHE [6 1 schemes 

.“+l(k + 1) = -.4r OH’(@“+‘(k)) + @” - (1 - O)dt N’” (56) 

converges linearly to a unique W” ’ provided 

The convergence criterion for the MSS iteration scheme may have restrictive time 
step limitations, whereas the time step restriction is critical in the NR scheme only if 
the Jacobian becomes ill conditioned. In the transport dominated regime, rhe 
Jacobian is well conditioned according to linear theory. Also in this regime, one aiso 
expects the nonlinear contributions to be small making the norm of the Hessian 
small. However, with Arrhenius kinetics, this term may be quite large. Finally, the 
third ierm, the initial error in the correction vector, is expected to be quite small 
during a transport dominated flow, but could be quite large, for a given time step, 
during an ignition process. During ignition, the initial guess, @” “(0) = @“, may be a 
poor starting point for the iteration process, and other initialization procedures may 
be necessary. 

The radius of convergence of the MSS and NR iteration schemes are given by 

1 
r 
Mss = I - At 0 (!~H/XJ I/ 

lpP”(l) - @‘““(O)l’ 

for the MSS scheme and for the NR scheme, 

where h is given by Eq. (54). 
The radius of convergence of the NR scheme is at least twice that of the MSS 

scheme. Only when the initial guess is quite close to the fixed point solution will the 
MSS scheme be more efficient than the NR scheme. To illustrate this point, consider 
the implicit-AD1 shallow water calculations of Gus&son [38]. Fot a time step four 
times greater than the CFL condition, NR schemes converged whereas the MSS 
scheme diverged. However, if the time step was less than four times the CFL 
condition and the solution was smooth, MSS proved to be more efficient than NR 
schemes from an operational count viewpoint. 

If one starts an iteration scheme within the sphere of convergence of the 
Newton-Raphson (NR) scheme, the NR scheme will converge quadraticaliy; if not, it 
will diverge disasterously. A number of modifications of the basic NR scheme have 
been developed that try to provide reliable convergence even when a good estimate of 
the solution is not available. The scheme used in this paper follows the hybrid method 
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of Powell (391 which biases the iteration corrections toward the steepest descent (SD) 
direction if the full NR corrections are too large or are in the wrong direction. This 
scheme is particularly attractive since the information utilized by the NR scheme can 
also be readily used by the SD scheme with comparatively few extra arithmetical 
operations. 

The NR correction vector is given in terms of the inverse of the Jacobian: 

m,, = -[.I”]- ’ Y(@“), (60) 

whereas the SD correction vector is given in terms of the transpose of the Jacobian: 

&DS” = -[.I”]’ Y(Q). (61) 

The correction vector recommended by Powell is a linear combination of the damped 
Newton-Raphson and steepest descent correction vectors: 

where c and ~1 are constants which are dynamically determined in Powell’s algorithm 
to minimize the residuals, Y. 

In the LSODE package developed by Hindmarsh and Byrne 1401, several 
improvements were made to the older GEAR package such as dynamic variable step 
size criterion and banded matrix storage and manipulation. Depending upon the 
problem, in some cases the same Jacobian can be used for about five step lengths 
with one or two iterations per time step. In more extreme cases, it was found 
necessary, not only to update the Jacobian every iteration of the time marching cycle, 
but also to adjust the time step during periods of highly nonlinear, transient 
processes. 

The Jacobian and its decomposition may be held fixed provided the rate of 
convergence is satisfactory during a particular ADI sweep. However, in a two- or 
three-dimensional problem, all the old Jacobians and their decompositions from each 
AD1 sweep would, most likely, not be able to be stored in fast core memory. 
Depending upon the computer available, it may be possible to store the old Jacobians 
and their decomposition on disk file. Such a strategy would be efficient if the I/O 
time of disk reads and writes were at least comparable to the fast core arithmetical 
operations. 

Because of the various classifications of difficulty and complexity possible in 
combusting gasdynamic systems, and the unequality of computer systems which are 
available, this paper advocates flexibility in replacing various modules by those which 
could be best suited for a particular problem. One must decide whether one can 
sacrifice fast core computer memory for a more efficient module, or settle for a less 
efficient module which uses far less computer memory. One such module that is 
worthwhile considering is the approximate updating schemes of the Jacobian and its 
decompositions during periods of rapid, highly nonlinear transients which have been 
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discussed by Powell j39] and Broyden 1411. The strategies developed in other 
research areas, such as electrical engineering, for solving large systems of nonlinear 
equations might prove to be very useful for combusting fluid dynamics. 

V'. TIME STEP CONTROL IN STIFF ODE AND PDE SOLVERS 

As Carver 131; has stated, the robust nature of stiff ODE solvers is partly due to 
dynamic time step control. This section will discuss the reason why an algorithm 
which is unconditionally stable in a transport dominated regime can be driven 
unstable in a highly exothermic combustion regime (ignition) unless proper time step 
control is exercised. Because it is possible in combustion phenomena to find 
situations in between either ends of the spectrum from the familiar aerospace 
transport dominated flows to pure Arrhenius kinetics, a PDE solver must be robust 
enough to handle any range of situations. 

In the aerospace applications of Warming and Beam i42], the advantages of the 
delta formulation or the Douglas-Gunn [ 14) ADI scheme are (in the absence of 
source terms): the steady state is independent of Ai; easy application of the boundary 
conditions; and general time differencing with a trivial change of parameters. 
According to linear theory, the Douglas-Gunn ADI scheme is unconditionally stable. 
Briley and MacDonald [ 351 argue that with the use of the BI-ADI scheme that 
steady state, if it exists, can be achieved quickly by cycling through large and small 
time steps if accurate transient solutions are unnecessary. In contrast, one of the 
serious defects of the fractional time step ADI scheme is that its steady state solution 
is time step dependent. 

‘4 rigorous analysis of the governing set of PDEs which occur in combusting 
gasdynamic systems will not be attempted. However, the examination of a much 
simpler problem analogous to the real problem is useful. Consider a I-D gasdynamic 
combustion problem in which all physicai diffusion terms are neglected. Since the 
PDEs are in conservative form, the convective portion can be replaced by 

A = c?F/&D; (63) 

cf. i 1, 2 j. Assume the convective flow is positive, and use upwind spatial differencing. 
In the time interval, At, assume that the source terms, S(Q), can be linearly approx- 
imated by S(Q) = -/i@, where n is a diagonal matrix having eigenvalues, (Ai)? which 
may assume any value in the complex plane. The governing set of PDEs is now 
replaced by the following inhomogeneous ODE at the location xI: 

d@Jdt = A’Qi + (A/AX) Qli-, , Ih4) 

where /L’ = LI - A/Ax. In the time interval, At, assume the inhomogeneous term and 
the A matrix are approximately constant. Equation (64) then has an exact solution of 
the form 

@; ! ’ = @I exp(,I; 1”) + (A/(Ax A’)) Oj , . (65) 
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The general linear multistep method, cf. Seinfeld et al. (43 ], has the form 

The numerical solution is given in terms of characteristic roots,J 

/‘-,$aifk-‘-(Ati’) + bifk-i=O. 
iSI 

(66) 

(67) 

One of the characteristic roots which approximates the Taylor expansion of the true 
homogeneous solution, f = exp(At i’), is denoted by f, ; the other roots are spurious. 
A linear multistep method is: (a) absolutely stable if every characteristic root is 
bounded by unity, ]ft] ,< 1 for all i; (b) relatively stable if ]fi] < If, ] for all i > 2. 

It is interesting to note that if Re(&) < 0, any integration rule is inherently stable 
for all values of At > 0; the exact homogeneous solution decreases exponentially with 
t”. However, if Re(&) > 0, the exact solution grows with t”; the important concern is 
the relative stability. Seinfeld et al. point out that this will be a valid solution as long 
as no component of the numerical solution increases faster than the one 
corresponding to the principal root. They also point out that even if Re(&) < 0, the 
absolutely stable regime, the trapezoidal rule is very inaccurate for very large, 
negative values of 1’ because it tends to -1 rather than to 0 which would occur in the 
exact method. This problem of gross inaccuracy can be avoided by either a simple 
filtering procedure or using small step lengths in those initial phases when the stiff 
solutions are noneligible. Note that in the absence of source terms, the trapezoidal 
rule for Eq. (64) is unconditionally stable for 0 > 4, at least according to linear 
theory. 

Boggs [44] has made a connection with the damped Newton-Raphson iteration 
scheme with the A-stable ODE integration schemes. The time marching scheme used 
to integrate the conservation equations may be viewed as an iteration process by 
which either a nonsteady or steady state solution evolves from an initial state with the 
time step parameter playing the role of a damping constant of the overall 
Newton-Raphson iteration process. If the damped NR scheme is viewed as a class of 
Davidenko differential equations, then the stability analysis of Dahlquist (45 ] used 
for A-stable ODE schemes can also be used in developing efficient, stable iteration 
schemes for nonlinear equations. Boggs (441 recommends that the damping factor or 
step length be chosen by considering the norm of the residuals and using a 
trapezoidal average of the old and updated NR correction vectors for increased 
stability. To minimize excessive updating of the Jacobian and its decomposition, he 
recommends the approximate updating procedure of Broyden [41]. From Boggs [44], 
one can infer that while NR iteration schemes correspond to A-stable ODE schemes, 
the MSS iteration scheme corresponds to an explicit one leg ODE scheme, with a 
similar restrictive region of stability and convergence. 

Time step control is also necessary to ensure that the Jacobian is well-conditioned. 
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Referring to Eq. (64), the trapezoidal time marching schemes give rises to a block bi- 
diagonal structure of the form 

A’@;‘; + B’,;+’ = Z,, (68) 

where A’ = -At @A/Ax, B’ = (I - 0 At A’), and Z’ = [@; + (1 - 0) At(/l’@; + 
A/Ax @y- ,}I. If every eigenvalue of /i’ is negative, the Jacobian is always well 
conditioned. If at least one eigenvalue is positive, then in order for the block bi- 
diagonal scheme to be decomposable, it is sufficient that B’ > 0, i.e., 

At < l/(@n;). (69) 

As this simplified system approaches steady state, the exothermic chemistry and 
the convective transport tend to balance, thereby permitting larger time steps. 
Concerning multidimensional problems, an eigenvalue analysis of the Jacobian would 
provide accurate information for choosing the optimum time step; however, such an 
analysis is impractical. The Jacobian of a system of nonlinear equations is well 
conditioned if it is positive definite, and preferably diagonally dominant. 
Heuristically, this property can be ensured if the diagonal elements satisfy 

I 3H’ 
m;‘n I+AtO---- 

I a~ ii 
>o 

which is similar to the restriction on At given by Eq. (69). However, the criterion 
used in this paper in determining whether the proper time step is chosen is that both 
the norms of the correction vector and the residuals be convergent, cf. Eqs. (3 I), (32), 
for each coordinate sweep of the Douglas-Gunn ADI scheme. If a time step is chosen 
to ensure that the Jacobian is well conditioned at each stage and if the correction 
vectors and residuals are convergent, then the Kantorovich theorem guarantees 
convergence to a unique solution, VT ‘. There are several areas of similarity and 
dissimilarity between the method of lines technique and this algorithm. The areas of 
similarity are: (a) the use of implicit time marching schemes, (b) the use of Newton- 
like iteration methods for solving the resulting set on nonlinear FDEs, and (c) the 
dynamic time step control based on the conditioning of the Jacobian. The areas of 
dissimilarity are: (a) the accuracy of the time marching scheme, i.e., trapezoidal of 
maximum order 2 versus various higher-order schemes, (b) matrix storage and 
decomposition, i.e., block tridiagonal versus banded, and (c) the frequency of 
updating the Jacobian and its decomposition during the time marching scheme. The 
last area of dissimilarity points out the difficulty in extending all the stiff ODE 
techniques to a multidimensional PDE problem when both the restrictions of 
computer memory and disk I/O operation efficiency become limiting factors. 

In summary, this algorithm has incorporated not only the features of the 
Briley-McDonald and Beam-Warming BI-AD1 scheme, but has also incorporated 
the features of the stiff ODE and nonlinear equation solver schemes. Because 
cornbusting gas dynamics are quite different from aerospace gas dynamics, careful 
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time step control is essential in regions of highly nonlinear exothermic Arrhenius 
chemistry to ensure that at least relative numerical stability is guaranteed. This 
algorithm is summarized in the Appendixes. 

VI. TIME STEP CONTROL AND MULTIPLE SOLUTIONS 

Because multiple solutions are possible in systems of nonlinear PDEs, a major 
concern is whether the resulting solution is determined by the numerics rather than by 
the deterministic chemistry and physics. In this section, an analysis of this question 
which was not performed in a previous paper concerning coal dust flames is 
presented. Later in this section, a literature review will further examine the attainment 
of an incorrect multiple solution from the numerics rather than by the physics. 

The calculations of Kansa and Perlee [46] on coal dust flames help illustrate the 
close coupling between transport and chemical enthalpy production that exists during 
periods of drastic timescale change. They assumed that a coal dust cloud could be 
approximated by an ensemble of independent microsystems which consisted of the 
coal particle and its surrounding gas volume. The coal particle was assumed to be a 
porous: permeable body which upon heating underwent Arrhenius pyrolytic decom- 
position producing char and combustible volatiles. In the gas subsystem, the 
following processes: molecular diffusion, convection, thermal conduction, and an 
irreversible second-order combustion reaction, 

are included. 

Oxidant + volatiles --) Combustion products (71) 

Given specific initial and boundary conditions, an interesting problem is to 
determine whether a characteristic steady state char burnout solution can be achieved 
within a specified time interval, cf. 1461. The determination of whether steady state is 
achieved within a characteristic time interval for plug flow coal dust flames depends 
strongly upon the transient pyrolysis process and volatile combustion process. 

Physical argument and numerical experimentation 1461 showed that a uniform 
mesh of 10 points more than adequately resolved the coal particle. Likewise, an 
exponentially stretching grid system of 20 points resolved the gas subsystem; the 
finest resolution of this grid network occurred near the coal particle. If the coal 
particle is smaller than 40pm, it will absorb radiation volumetrically, cf. (461. In 
addition, if the flame is of infinite extent compared to the coal particle and if the coal 
particle absorbs radiation volumetrically, then a one-dimensional model is sufficient. 

Figure 1 illustrates an ignition phenomenon over a very short duration, i.e., a sharp 
spike in the fuel consumption rate. The solid line represents the log of the absolute 
value of tifue,. In this study, a 7.5;um coal particle approaches a flame at 1800 K 
with an input velocity of 30 cm/set. The coal particle, which is heated initially by 
radiation, begins to rapidly pyrolyze when the particle temperature exceeds 450 K. 
Because of the small length scales, molecular diffusion and convection rapidly mix 
the volatiles and oxidant within the gas system. Before IO.5 msec, up to point A, the 
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FIG. 1. The absolute value of the log of fuel consumption, the rate of coal pyrolysis and temperature 
profiles of a 490.mg I- ’ coal dust flame around the time of gas phase ignition. 

PDE solver used times steps on the order of 0.1 msec. However, immediately after 
point A, the gas temperature 3-5 particle radii from the surface exceeded 925 K, and, 
because of the Arrhenius kinetics, the gas mixture of volatile fuel and oxidant 
appeared to ignite homogeneously. Between points A and C, convergence could only 
be achieved by using time steps of 2;usec duration. During the ignition period which 
is represented by the sharp spike, the gas temperature was around 2100 K, except 
near the coal particle. 

Because a large thermal gradient was established at the particle surface during the 
ignition phase, the particle underwent accelerated heating and pyrolysis. The broken 
line in Fig. 1 represents the rate of solid pyrolysis. Because of the difference in 
thermal inertias between the gas and particle subsystem, the soiid pyrolysis rate was 
a maximum at point C. After 11 msec, the ignition phase was terminated because the 
oxidant was completely consumed within the gas subsystem, slightly after point B. 
The coal particle continued to pyrolyze up to 13.5 msec, point D. after which the coa.i 
particle was completely converted to a char residue. As the pyrolysis reaction ran 
down, the time steps were increased to 0.25 msec. In addition, as the microsystem 
became progressively more inert, the Jacobian also varied progressively more slowly 
in time. The burning distance for fine coal particles has been measured to vary from 
0.3 to 1.5 cm depending upon the dust concentration and input velocity. This model 
predicts that a 490 mg/liter dust cloud with an input velocity of 30 cm/set will have 
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a burning length of 1.0 cm which is in excellent agreement with observation. This 
result indicates that although the chemistry is oversimplified, the physics is essentially 
correct for this type of coal dust flame. 

The inset in Fig. 1 represents the particle temperature profiles at the times 
indicated by points A, B, C, and D. During periods of significant pyrolysis (due to 
heating by the burned gas phase), the coal particle temperature profiles are quite 
nonuniform, contrary to most opinions, because of the large amount of internal 
convective heat transport. Only when pyrolysis occurs very slowly can the 
temperature profile within the coal particle be assumed to be uniform. 

Figure 2 shows the temperature and species mole fraction profiles in the gas 
subsystem, prior to, during, and after the gas phase ignition. Before ignition 
(t = 10.673 msec), the temperature, oxidant, and fuel molefraction profiles were 

KEY 

- Temperature 
-_---- Oxidant concentration 

--- Fuel concetttrotlon 
---- Products concentrotton 

DISTANCE FROM PARTICLE CENTER, r/r.,, i 

FIG. 2. The gas temperature and gas species profiles of a 490.mg I-’ coal dust flame immediately 
before, during, and after the gas phase ignition. 
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rather uniform. From time t = 10.708 to 10.716 msec, drastic changes have occurred 
not oniy in the temperature profiles. but also in the species molefraction profiles as 
well. A homogeneous ignition within the gas subsystem heated most of the gas 
volume. and set up a large thermal gradient 3 particle radii from the coal par&e. 
The coal particle was rapidly heated by gas conduction thereby producing more fuel 
by pyrolysis to sustain the combustion. At time t = 11.223 msec, the gas phase 
combustion terminated due to the complete consumption of oxidant. 

Figure 2 reveals some interesting chemical and physical phenomena. In heat 
diffusion processes, long length scales and timescales are usually expected. However. 
after the fuel-oxidant ignition, the high rate of enthalpy production established 2 

large thermal gradient over a very short distance near the particle heating the particle 
at an initial rate of 24,000 cal/sec. During this ignition period, processes that had 
been decoupled by virtue of the widely disparate time constants had then become 
tightly coupled because of drastic changes in condition. From ‘;46!, parameters such 
as the flame temperature, dust concentration, coal particle radius, and input veiocity, 
etc.. form a complete set which has a unique solution. However, there exists a 
continuous family of solutions, each of which exists for a different parameter set. li 
the iteration process were not performed carefully, i.e.? Kantorovich’s theorem were 
violated, then the iteration process could jump to a different solution branch which 
was not part of the original parameter set. Smoot and Iiorton 147) in their coal dust 
calculations also reported the existence of multiple solutions, some of which were not 
physically realized, if their time step selection and iteration parameters were 
improperly chosen. 

Shampine and Gear 1481 evaluated the technique of removing stiffness from a 
model by changing the model. If certain chemical reactions attain equiiibrium very 
rapidly, one could substitute equilibrium expressions for such reactions. However. 
they cite an example in which such approximations resulted in the wrong steady state. 

In a recent paper, Briley and McDonald [35] recommend viewing a time marching 
scheme as an overall iteration scheme seeking the steady state solution (if one exists). 
By cyclicaliy applying a sequence of time steps which range within physica.i!y 
permitted timescales, convergence to steady state was accelerated. Small time steps 
reduce the small spatial wavelength errors, while large time steps reduce the large 
spatial wavelength errors. An analogous viewpoint had been expressed earlier by 
Boggs 1441 and Branin [49] regarding damped Newton-Raphson schemes and P,- 
stable ODE schemes; however, without the cycling procedure. The damping 
parameters of the NR scheme may vary considerably, but the finest resolution was 
recommended for solution trajectories in regions of high nonlinearity. In dealing with 
combusting gasdynamic systems, the algorithm used to solve the governing PDEs 
shouid be flexible to follow the evolution of the solution trajectory in both the highly 
nonlinear regions as well as the nearly linear regions in the most efficient manner 
possible. 

Kooker 119 ] showed that while block implicit methods are numerically stable for 
confined flame calculations using time steps considerably larger than the sound speed 
restrictions, such solutions are physically incorrect. Even though the acoustic 
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pressure interaction accelerates the flame front giving no steady state solution, he has 
found that a linearly stable block implicit code does not, per se, guarantee physical 
correctness unless the proper deterministic time step based on the burnt gas sound 
speed is used. His results should stimulate the analyst to examine his solution 
technique, to formally verify his results and understand his conclusions. 

Branin [49] has studied the problem of solving systems of nonlinear equations and 
the location of multiple solutions. Using a damped Newton method with a steering 
correction, he has found that if too large a Newton step is taken, the trajectory may 
pass over several solution points of !P(@) = 0 if they happen to be closely connected. 
He recommends computing the orthogonal component of the vector as a function of 
the distance along the trajectory. If this orthogonal component increases too rapidly, 
then smaller changes are required. Also there is danger if the Jacobian changes 
sufficiently without updating in severely nonlinear regions. The regions described by 
the loci of singular Jacobians were observed to be saddle and vortex points. His 
recommendations were incorporated into the algorithm, especially for the highly 
nonlinear, exothermic ignition processes. 

The analysis of multiple steady states that are possible from the deterministic 
equations was provided by Andronov et al. [SO]. The steady states of large fires in 
vertical shafts are classified as bistable; a combusting steady laminar flow which 
suddenly switches to a turbulent flame is classified as a metastable steady state. In 
addition, Mange1 (511 has provided a simple example illustrating multiple steady 
states that could be obtained in a finite difference scheme. Consider the differential 
equation 

&c/&=(x-1).(x-3)e(a-x), (72) 

where x(0) < 1 and 1 < a < 3. The stable steady states are x = 1 and x = 3, while 
x = a is an unstable steady state. However, x = 1 is the true steady state given the 
initial condition, x(0) < 1. If this differential equation, Eq. (72), is integrated by a 
finite difference scheme, it is possible to end up at the steady state solution x = 3 if 
the time steps are too large. To miss the proper steady state at x= 1, suppose that 
x(t) < 1 and x(t t dt) > a. If the time step, dt > 1/1(x - 1) . (x - 3)] were used, then 
the finite difference scheme will yield x = 3 the steady state solution, instead of x = 1 
which is the true solution. Mange1 1521 also constructed a theory for predicting the 
probability that a nonlinear system may be driven to a multiple steady state, P2, by 
fluctuations against the deterministic flow starting from an initial state which is deter- 
ministically attracted to the steady state, PO. He further discusses the misuse of 
mathematics corresponding to linear dynamics when the dynamics are totally 
nonlinear. 

VII. COMPUTATIONAL EFFICIENCY CONSIDERATIONS 

This section will compare the computational efficiency of the iterative BI-AD1 
scheme with simpler approaches. Also the problem of efficiently solving a large 
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system of PDEs by the BI-ADI scheme for detailed chemical kinetics will be 
discussed. 

In both the stiff ODE and PDE schemes, the nonlinear PDEs are linearized by 
some variation of the Newton method. The resulting linear equations are solved, in 
general, most efficiently by direct methods. However, the direct algorithms 
specifically designed for tridiagonal and block tridiagonal are more efficient than the 
general purpose Gaussian elimination procedure. Although simpler schemes do exist 
for solving linear and nonlinear equations, ODES and PDEs. not all schemes are 
equally efficient and robust. 

Suppose a two-dimensional combusting fluid flow problem is considered having L 
coupled equations and N grid points along each coordinate axis. In addition, suppose 
that the problem is characterized by a very large exothermic chemical enthalpy 
production rate, so that for a reasonable time step the nonlinear truncation errors are 
greater than the temporal truncation errors justifying an iterative block implicit*ADI 
scheme. Furthermore, assume the worst possible case in which an updated Jacobian 
is required for each iteration along each AD1 sweep. Two traditional schemes, the 
iterative uncoupled Crank-Nicholson and the ICE-like RICE and APACHE 
schemes. will be compared on an operational count with the iterative block implicit- 
ADI scheme. A conservative estimate of the operation count of the ICE-like schemes 
is 2LN2; the operation count for the iterative uncoupled Crank-Nicholson scheme 
which gives rise to a simple tridiagonal matrix is 2NL( 1ON - 8). On the other hand, 
the operation count for the iterative block implicit-AD1 scheme per iteration is 
2W(3N - 2) L2(L t 1 j. To compare the relative efficiencies of each scheme, suppose 
that in solving the above problem the same time step and error criterion ;jr 
convergence is imposed on each scheme. The iterative block implicit-AD1 scheme is 
said to be more efficient if this scheme converges within a prescribed error toierance 
using fewer operations. 

I,,, < (10N - 8) Z,,/lL(L f 1)(3N - 2)], (73) 

zrer < NZ,,.,/IL(L + 1)(3N - 2);. (74) 

For example, if L = 6 and N = 20, the iterative block implicit scheme must 
converge approximately 13 times faster than the decoupled Crank-Nicholson scheme 
and 126 times faster than the ICE schemes. Ramshaw and Dukowicz f6/ in 
discussing the APACHE code state that in problems with large amounts of heat 
release. 500 or more iterations per time step may be required for convergence, if 
indeed it occurs at all. In order for the IBI-AD1 scheme to be more efftcient than the 
APACHE code, it must converge within 4 iterations, which is the normal case. 

If the physical processes in combusting flow problems such as gas explosions in 
coal mine corridors are of primary interest, then five to seven conservation equations 
using global chemical kinetics are adequate. However, if the chemical processes are 
of primary interest such as air pollution control or flame inhibitor studies, then a~ 
least 30 to 50 chemical species as well as detailed chemical kinetics are required. In 
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detailed chemical studies, not only does computer storage become a serious problem, 
but also the number of operations to decompose a large block tridiagonal matrix rises 
astronomically. Consequently, a combination of direct and indirect methods based 
upon block decomposition must be considered. 

Steger 1531 found that the computational effort could be markedly reduced if the 
block of L equations were made reducible (uncoupled) by similarity transformations. 
He considered a two-dimensional nonreacting inviscid problem; under an appropriate 
similarity transformation, the original 4 X 4 block problem was reduced to a 
sequence of a 2 x 2, and two 1 x 1 problems. When complex chemically reacting 
systems that include Arrhenius kinetics and various forms of physical diffusion are 
considered, such a transformation might not exist or it may be very difficult to 
construct. Most likely, approximate decoupling based on chemical and physical 
arguments (such as grouping reactants into sets in which the timescales of transport 
and kinetics are either similar or dissimilar) rather than on rigorous mathematics 
might be the best one could expect. Briley and McDonald 1351 have discussed 
reduction techniques such as “order epsilon decoupling” and the use of exact and 
approximate decoupling procedures based on chemical knowledge to simplify 
complex chemical problems. 

The analyses of Westbrook and Haselman 1541 on the detonability of natural gas 
(90% methane, 5-S% ethane, plus other complex hydrocarbons) are useful in gaining 
insight for block splitting the chemistry. Using 27 species and 75 separate chemical 
reactions, their analyses showed that the detonability of natural gas was primarily 
due to the presence of ethane which provided the source of readily available atomic 
hydrogen necessary to initiate the branching chain reactions. The intermediate species 
such as formaldehyde, molecular hydrogen, and carbon monoxide liberated very little 
energy so that the temperature and pressure of these reactants remain relatively unaf- 
fected. Most of the energy release comes from the oxidation of carbon monoxide and 
hydrogen into carbon dioxide and water, respectively, neither of which occurs 
significantly until near the end of the chemical induction period. 

Each reaction step is controlled by the availability of free radicals. Atomic 
hydrogen reacts rapidly with 0, to produce 0 and OH free radicals which form the 
core of the branching chain reactions which consume the fuel and generate more 
atomic hydrogen. The C-H bonds of methane which are quite strong in comparison 
to ethane commence bond breaking collisions in substantial numbers only after a 
significantly high temperature is reached. 

A three-dimensional BI-AD1 code with the detailed chemistry of Westbrook and 
Haselman [54 ] would be untractable on most computer systems. However, a 
standard technique for handling very large matrix problems is matrix partitioning, cf. 
Westlake 1551, and can be readily applied to a block tridiagonal matrix structure. For 
increased efficiency, it is recommended that such partitioning be based on chemical 
and physical judgment. 

It is suggested that the kinetic scheme for natural gas could be solved iteratively as 
a sequence of smaller problems. Using Westbrook and Haselman’s (541 data and 
analysis, it appears that ethane and its daughter species would be one subgroup, 
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methane and its daughter species would be another, CO, H2C0, and H, and heavier 
intermediate species would form a third group, while H, 0, OH form a fourth group: 
i-I20 and CO, form a fifth group: and, the mass, momentum (along a given coo?-- 
dinate). and energy form the last group. 

Species should be grouped as much as possible according to the activation. energy 
of the “dominant” reaction as well as the expected concentration levels based upon 
judgment of chemical and physical insight. The strategy of combining direct and 
indirect methods within an overall matrix partitioning scheme is recommended by 
authors such as Westlake [55j in dealing with large sets of linear and nonlinear 
eqilations. 

If the finite difference scheme has been properly formuiated and if the proper rime 
steps are carefully chosen, it has been found that two to three iterations are required 
for convergence within some error tolerance, i.e.. 10 6. This yresent study concurs 
with the conclusions of Keller 110 ] that if more than five iterations are required, then 
more than likely, the numerical scheme has been improperly formulated. Because the 
ciass of Newton-like schemes converges quadratically as opposed to the linearly 
converging method of successive substitutions, the simpler scheme may often require 
more arithmetic operations than the more power Newton-like schemes. 

VIII. RESULTS OF A TWO-DIMENSIONAL CALCULATION 

The algorithm developed in this paper was applied to the time evolution of a two- 
dimensional burning wick in a gravitational field going to steady state. A previous 
one-dimensional transient calculation by Hertzberg et al. !56] of combustion 
involving a spherical wick in the absence of gravity showed that the combustion even- 
tually was extinguished because the process choked itself. Because the combustioc 
products accumulated around the wick with no process other than diffusion to 
remove them, the combustion process eventually ran down because oxidan? and fuel 
had to diffuse over increasingly larger distances in order to react, and the rate of heat 
loss from the combustion zone was eventually grearer than the rate of exothermic 
heat production. 

Kumagai and Isoda 1571 also performed a series of photographic experiments by 
using an enclosed falling chamber in which fuel drops attached to a wick were 
ignited. After 0.3 set of free fall, g,,,= 0, there was a considerable diminution of 
luminosity of the cornbusting fuel drop. In addition, the combustion zone as defined 
by the region of luminosity was considerably broadened while preserving its spherical 
shape. In contrast, at 0.3 set, the full g case appeared to have been in a steady state 
condition for a while and the combustion region whose luminous zone assumed a 
teardrop shape was very intense. In addition, the luminous zone was thin at the 
bottom and thickened at the top. 

In both the one- and two-dimensional burning spherical wick calculations, the 
chemical reaction describing the combustion process was an irreversible second-order 
reaction of “fuel vapor” and “oxidant” going to “combustion products.” The 
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TABLE I 

Parameters Used in Burning Wick Calculation 

apI=ap2= 2.6.10'0cmJgm 'sec. ' 
aDj = -2a,, 

C/h = ‘PI = c,,, = 0.23 cal g -’ Km ’ 
D,., = D,,,= D,., = 0.22 cm’sec- ’ 
E,, = E,, = E,, = 18,000 cal mole-’ 

g=980cmsec-* 
K=2.9325 X 10mb T"" calcm-‘secK -’ 

M,=M,=M,=30gmole~’ 
p = I atm 
R = 1.9869 cal mole- ’ K -’ 
To= 300 K 

y= I.4 
AH= 94,000 cal mole-’ 

fl= 1.13355 X 10 -’ \/T poise 
po= 1.2186 x IO-‘gem ’ 

activation energy, pre-exponential constant, heat of reaction, and other system 
properties are summarized in Table I. 

In both the one- and two-dimensional burning wick calculations, the following 
boundary conditions were identical: at the wick surface, r = 1 cm and for all angles 

Poxid = Pprod = 0; P/z MflRTboi, ; T= Their= 300 K, 

PU = P,,,PWf/P)Jl pc = 0. 
(75) 

The burning wick and oxidant were enclosed in a large mathematical volume of 
radius 80 cm. At this boundary, the conditions that apply are 

P= 1 atm; T=3OOK, 

P,‘Pprod = 0, (76) 

P oxid = M,,,,/RT. 

The initial conditions for both sets of calculations were: constant and uniform 
pressure, no gas motion, and a uniform temperature distribution at 300 K everywhere 
except for an ignition region set at 2250 K 2 cm from the wick. Furthermore, the 
oxidant density was uniform for ah radii greater than 2 cm; the fuel density, for all 
radii less than 2 cm. The initial conditions are (for all angles): 

pu=pv=O for all r> 1 cm; pprod = 0 for all r > 1 cm, 

P= 1 atm for all r, 
(77) 

T=300K for all r=2cm, T=2250K for r=2cm; 

pf=M/IRTforr<2cm;pf=Oforr>2cm. 
(78) 
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The problem of using an adequate mesh to best resolve the diffusion flame 
surrounding the sperical wick was resolved by numerical experimentation. The radial 
coordinate was spanned by an exponentially stretching coordinate system with the 
finest resolution. The radial coordinate was stored as a vector whose form is given by 

where 

r(j) = exp(LlZ . (j - l)), (74; 

dz = bW.0) 

(24 - 1) 
= 0.19052. 

This problem was deemed adequately resolved by such a radial grid because unlike 2 

propagating laminar premixed flame, this flame is essentially 2 stationary diffusion- 
like flame. In the half plane, 0 < 0 < II, the angular coordinate was spanned by a 
uniform mesh of 10 points. The other half plane was generated by symmetry con- 
siderations. 

The RICE (4, 51 and APACHE (61 codes provide the details of the governing 
PDEs in conservative form. For completeness the conservation equations and finite 
difference approximations are given in Appendix B. The vector of the residuals and 
the Jacobian for the radial and angular sweeps can be reconstructed in a 
straightforward manner. 

At t = 0. there were large temperature and concentration gradients at r = 2 cm. As 
molecuiar diffusion and thermal conduction smooth the profiles to cause 2 sui”ficient 
overlap of the fuel and oxidant, the second-order Arrhenius reaction commences to 
produce heat and product gases. The combustion wave flows both outward to infinitl: 
and inward to the spherical wick. Both convection and diffusion mix oxidant and fue!. 
thereby increasing the combustion rate. 

This initial combustion phase occurred on less than 2 millisecond timescale. 
However. as the hot combustion zone thickens, the rate of combustion and heat 
release gradually slows down because fuel and oxidant must diffuse over increasingiy 
larger distances before they can react. During the first 200 msec. the velocity vectors 
and the temperature contours are overwhelmingly radial and symmetric, cf. Fig. II. 
(In both Figs. 3 and 4, the gravitational acceleration is directed downward; since the 
radius of the wick is 1 cm, the lengths may be estimated by referring to the figures.] 
During this period, the maximum gas velocity is about 250 cm/set which corresponds 
to a fla.me speed of about 290-310 cm/set. 

As time evolves. there is a slow steady departure from spherical symmetry due to 
the buoyant force. Buoyancy aids in the removal of combustion products near 9 = 7i! 
thereby narrowing the distance over which oxidant and fuel must diffuse ir. order to 
reaci. Eventually the flow field and the temperature distribution will no longer exhibit 
spherical symmetry. 

Figure 4 shows the immediate flow field over the spherical wick and the 
temperature profiles 1.2 set after ignition. The maximum initial temperature was 
2250 K1 but it has now dropped to 2100 K. In the upper half of Fig. 4. the 
combustion zone is considerably thicker than that in the lower haif plane. The 
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PIG. 3. The convective gas flow and temperature contours of a burning spherical wick in a 
gravitational field SO msec after ignition. 

Maximum / 1 
combustion rote 

lh 

FIG. 4. The convective gas llow and temperature contours of a burning spherical wick in a 
gravitational field I .2 set after ignition. 
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oxidant in the upper half plane near 13 = 0 has been considerably diiuted by product 
gases which were convected there by buoyancy. In addition. there is a preferentiai 
region. near 8 = x. for combustion to occur because fresh oxidant is constantly being 
supplied and hot product gases are constantly being swept away by buoyancy; ccilse- 
quently, the temperature contours are less diffuse at the bottom but more diffuse at 
the top. 

The flow field (on the order of 4 cm/set) is no longer predominantly radial. but 
exhibits a considerable amount of tangential flow. The flow profile shows that cold 
oxidant Rows down toward the bottom of the wick, then upward to react with the fuei 
vapor. In the temperature region, 600-1500 K. the flow pattern is directed upward 
indicating that hot product gases are being convected upward from 8 = rt to cj = 0 by 
the buoyantly induced convection. This picture agrees weli with the photographic 
evidence of Kumagai and Isoda (57 1 and the analysis of Hertzberg et al. !58 ). in 
addition, the quantitative agreement of the maximum velocities of the flew field 
during both the ignition and steady state phases is in exceilent agreement with obser- 
vation. A more complete study of the influence of buoyancy upon combusiior. wil! 
appear in a separate paper. 

During the rapid combustion phase, time steps on the order of 0.1 msec were used. 
The burnt gas sound speed is approximately 94,500 cmjsec. Such a time step is about 
470 times greater than the explicit CFL time step. During this transient phase. the 
Jacobian was updated often in the radial sweep (the approximate updating moduies of 
Broyden and Powell required too much computer memory); as much as three 
iterations were required per time step in the radial ADI sweeps. 

The PDEs were cast into dimensionless form; the diffusion coefficients were rauher 
small in comparison to the pressure and enthalpy of combustion. To prevent 
numerical diffusion from becoming too large, the numerical diffusion was restricted 
to be less than 2% of the actual physical diffusion. The value of the time splitting 
parameter was taken to be 0 =f + 1.5 x lo-‘. Of course, in other problems, this 
amount varies with the scaling parameters. 

As the burning wick system slowly evolved toward the steady state configuration, 
time steps of approximately 10 msec were used which is 2O?h of the maximum 
convective time step restriction. In this stage, the rate of enthalpy production by 
combustion is being controlled by the buoyantly induced convection and molecuiar 
diffusion. Since the radial and tangential momentum components are comparable in 
magnitude, convergence was achieved in one iteration during both the radial and 
tangential AD1 sweeps. It might be said that the conditions during the approach to 
steady state are very favorable for very large time steps. In this stage, the time step is 
on the order of the convective limit; but it was chosen more cautiously to micimize 
large changes in the temperature which would affect the Arrhenius kinetics. Note that 
this more cautious approach was also taken by Lund [ZO]. During the highly tran- 
sient stage, based on an approximate operation count, an explicit calculation would 
be comparable in effort to the iterative block implicit-AD1 scheme. However, as 
steady state is approached, block implicit methods become significantly more efficient 
than explicit schemes. 
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During the highly transient initial ignition period, the radial momentum component 
should overwhelm the tangential component. This information was not exploited, and 
the six conservation equations (one mass, one energy, two momenta, and two species) 
were not decoupled. The matrix inversions of the 6 X 6 matrix required for the 
tridiagonal block decomposition scheme were handled by a double precision 
subroutine. Lund (2OJ showed that a considerable gain in computational efliciency 
could be realized if the matrix handling routines were done in assembly language 
routine, rather than by a Fortran routine. This run took about 6.5 hr on a Burroughs 
6700 computer; this time appears to be competitive according to Otey 1221 who 
tested other PDE solvers. 

This method is also being applied to a 3-phase problem of wood and coalbed 
combustion in which a very nonlinear water evaporation and condensation source 
term as well as a three step global pyrolysis scheme is included. Block reduction 
techniques are being used in those temperature regimes where it is known that certain 
reactions are decoupled. 

An interesting experiment verifying the predicted results of these calculations 
would be to conduct a burning wick experiment aboard a satellite in a free falling 
orbit about Earth. The calculations predict that in the absence of gravitational 
acceleration, a spherical burning wick would eventually extinguish because the 
combustion process would choke itself. However, in an accelerating field, buoyancy 
induces an asymmetric flow field by which cold oxidant is being supplied to support 
the combustion at the bottom while hot product gases are being swept away at the 
top. 

SUMMARY 

The algorithm presented in this paper is a complex strategy designed to solve 
highly transient, highly nonlinear multidimensional PDEs which occur during highly 
exothermic combusting gas dynamics. It has built upon the earlier works of Briley 
and McDonald [ 121 and Beam and Warming [ 131 who devised an efficient 
noniterative block implicit-AD1 scheme for multidimensional fluid flow problems. 
However, when dealing with highly exothermic combusting gas dynamics with 
Arrhenius chemical kinetics, the noniterative block implicit-AD1 scheme will not be 
sufficient for all such problems. Because of the complications introduced by 
considering highly exothermic combustion with Arrhenius kinetics, the basic 
strategies that worked well with the stiff Gear-like ODE and nonlinear equation 
solvers were adopted in this algorithm; i.e., the implicit treatment of the FDEs, the 
use of Newton-like methods to solve the resulting FDEs, and dynamic step length 
control, or damping of the NR corrections. Care was taken in highly nonlinear 
regions to ensure that solution trajectory did not branch to a spurious solution. 
Iteration is used only if the norm of the residual errors of the FDEs exceeds a given 
error tolerance. According to linear theory, an implicit formulation of a set of PDEs 
is unconditionally stable provided that system only involves convection and diffusive 
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approach, but it is advisable to continuously determine which method is best suited 
for a given set of circumstances. 

The decision whether to use implicit or explicit schemes, as seen from Kooker’s 
findings, appears to be quite problem dependent. A conservative approach would be 
to choose an explicit scheme if qchem is quite small in comparison to energy transport, 
and if the convective flow is above 0.05 Mach. Because an operation count is about 
the only simple heuristic manner in which to make such a decision, an explicit 
scheme is more efficient in a time interval 1, to t,, if the expected number of 
operations from an explicit scheme is less than that of either an iterative or 
noniterative BI scheme. 

However, as a general rule, implicit schemes are increasingly more efficient with 
increasing spatial resolution. Fasel (601 has compared the relative efficiency, based 
on an operation count, of explicit and implicit schemes with increasing spatial 
resolution. He concludes that there exists a crossover point at which implicit schemes 
become increasingly more efficient than explicit schemes as the spatial resolution 
increases. 

Combustion also offers an additional complication because of the possibility of 
multiple solutions (cf., Branin (491, Mange1 151, 521, Ortega and Rheinboldt 1371, 
and Lewis and von Elbe [611). By properly formulating the solution procedure to 
ensure each part of Kantorovich’s conditions are met (monitoring At, the Jacobian 
and convergence of !Q Kantorovich’s theorem guarantees convergence to a unique 
solution, V+ ‘, at every step. 

The comments of Shampine and Gear [48] for ODE solvers apply equally well for 
PDE solvers. All such codes are problem dependent and require tine tuning for 
efftciency. Some codes developed for one class of problems may turn out to be inef- 
ficient for other classes of problems. They also caution about using time steps so 
large than an active component of the solution is missed. They emphasize the need 
for a conservative, choice of error tolerance and scaling, experimentation, and 
thoughtful examination of the numerical results. 

APPENDIX A: SUMMARY OF STRATEGIES 

The desired goal in solving systems of multidimensional PDE problems is to obtain 
reliable results at the minimum of cost. As pointed out in several references regarding 
stiff ODES and nonlinear equations, there is no comprehensive mathematical theory 
developed to date to solve such problems in the most efficient manner. The optimal 
strategy is problem dependent, and fine tuning and experience are required. Other 
than experience, an operational count can help one decide which path is the most 
efficient at a given time. 

I. Initialize problem, t = 0. 
II. Estimate timescales, pick smallest to start problem 

III. t “+‘=t”+At. 
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IV. Explicit-implicit operations count, assume 

AImin < Afexpl < Atimp;* 

A. Is N,,(expl) dfexp, < N,,(impl) Atimp,? 
1. Yes. Is transport slow in comparison to chemistry? If so. choose 

implicit chemistry, explicit hydro solver (cf. Westbrook and Haseiman 

!54/). 
2. No. To optimize efficiency in most cases choose BI-AD1 scheme (cf. 

McDonald (26 1). 

V. BI-ADI scheme. 
A. Noniterative BI-ADI scheme (ZTR = 1). 

1. Construct y/. 
2. Use old J and its decomposition if available. 
3. Obtain 6@(l) and W+‘(l). 
4. Test whether 1) yl(@“+ ‘( 1))[1 < c. 
5. If yes, increase time step, go to III. 
6. If no, go to V.B. 

B. Iterative BI-ADI scheme. 
1. Check Jacobian conditioning. 

Is mini{ i + At 0 dH/&D}j,, > O? 
2. If no, pick Ar which satisfies above restriction, reinitialize W-l, gc TO 

II!. 
3. If yes, determine whether reducing dt is more efficient than reducing 

nonlinear truncation errors by iteration. 
a. Hopeless-case-runaway divergence if /I 8@( I)i\ > Mq and j! Y( 1 )!I > 

Mc (M- 104- lo’), flag divergence, reduce At, reinitialize @,“- ‘, go 
to III. 

b. Possibly converged case liM(l)// < Mq; j! Y(l)\i < ME go to V.B.4. 
4. ITR =iTR + 1. 

a. Use Powell’s method for obtaining d@(ITR -V i). 
b. Check if II Y(ITR + l)ji < E. 

(i) If yes, go to 111. 
(ii) If no. go to V.B.4. 

c. Check whether 

Ii Y(ITR + l>ll < II Y(ITR)lj, 

!I hD(ZTR + l)ll < I\&?(ZTR)Ij. 

d. If yes, go to V.B.4 if ITR < ITR MAX; otherwise, go to V.B.5. 
e. If no, update J, J’, and J-’ (i.e., decomposition). 

(i) If J is well conditioned, and if 

ITR < ITR MAX, 

go to V.B.4. 
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(ii) If J is not well conditioned, adjust At, reinitialize W’+ ‘, go to 
III. 

5. ITR = ITR MAX. 

(I Y(ZTR MAX)// > E. 

The time step is too big, reduce At, reinitialize ant ‘, go to III. 

VI. t = r,,, . Stop calculation, 

APPENDIXB: CONSERVATION EQUATIONS 

The problem of the burning wick is done in spherical geometry assuming azimuthal 
symmetry. The conservation equations are found in RICE (41, and in the standard 
reference by Bird et al. 1621. To obtain the momentum equations in conservative 
form, take the momentum equation given by Bird, and add to it the mass conser- 
vation equation multiplied by the appropriate velocity component. 

To simplify the energy equation, it was assumed that all the diffusion coefficients, 
specific heats, and molecular weights were constant and equal for each species. 

For programming simplicity, the following compact vector notation was used. 

@ = [p, mr, mt, e9po,pflT, 

CR=[1,ur,vt,(p+e)/~,X~.X,]“, 

F = CRmr, 

CT = [ 1, UT, vt, (JJ + e)/p, Xr, X,, I r, 

G = CTmt, 

PR = [O,p, O,O, O,O]r, PT = (O,O,p, 0, 0, O]“, 

021-lr~aT~ ax, T 
’ 2r ’ 2r ’ 2r ’ 2r ‘7 1 ’ 

2JT -= 
’ 

al9 
o aur avt 2T 2X/ 2X, 

-1 ’ ae ’ ae ’ 2e ’ 2e ’ ae ’ 



MULTIDIMENSIONAL COMBLISTING I:LOiV PROBLEMS 187 

T 

+ VIS. ENG}, ci+, 3, 1 , 

where 

ur = mr/p, vt = mt/p, $=P/lP. X,=P,lP: 

e = pE = c,. pT + t(mr* + mt*)/p, 

p = (:i - l)[e - +(mr* + mt*)/p j$ 

T=:[e/p-{(ur2+vt2)] 
1’ 

VZS.ENG=2ji [ ($)‘+ (+-7))’ 

+ T+-- 
i 

vt cot e 2 

1 [ 

rE (vt) 1 2ur 2 
r + ry+TT I 

The chemistry is a one step irreversible bi-molecular reaction given by 

o +f-+ products, 

(+-ci),-& I’ 

&I, = Litr= A, exp(-E/RT)p,p,. 

The six conservation equations can then be expressed compactly as 

II 

Y=$+$$(r’CRmr)+ 
/ 

& $ (sin BCTmt) 

-&- (sin&$) +$++g+S=O. 

For convenience, define a exponentially stretching coordinate system 

so that 

a la 
-=--3 i?r r az 
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Y is recast as 

B=$+f-$r’CRmr)+ --&j(si”ecTmr)++-[~+~] 

-&3 (sin&$) +S=O. 

Because finite difference schemes may give rise to truncation errors which behave 
as negative diffusion, such terms are cancelled by the method report by Rivard et al. 
[ 4). These terms are accounted for by adding extra positive diffusion to the physical 
diffusion terms and in the source terms, cf. Appendix C. 

The finite difference equations have all the variables centered about the point r,, 0, 
or (Zi, ej). 

The trapezoidal rule for the time marching scheme is expressed as 

Y= @r ‘(k) - @G + At 8Hij(~~“(k)) + At( 1 - 0) H,(V), 

where 

H,j = OR, + OT, + S,,’ 

OR, = l/(r,’ Az)[~{ (rf+ 1 CRMR),+ I,j - (r*CRMR),- I,j! 

- 4, t12 cri+r I/2,,((CRMR)i+ 1.j - (CRMR)i,,)/2 

+ rf- 112 Er; I/2,j((CRMR)i,j - (CRMR)i- ,.j>P 

+ (l/AZ){ri.+ “20,+ l/*.jiJRt+ 1.j - JRi,iI 

- ri- l/zut- I/*.jlJR/,/ -JR,- I.jI I 
+ 1/(2rAZ)(f’Ri+ I,j- f’Ri-,,j)]* 

If sin 8, # 0, then 

OT,,, = l/(ri sin f?Ae) . { [)((sin BCTMT),,,, , - (sin BCTMT)i,j- ,) 

- sin 8,+ I/Z Et&- I,2((CTMIi.j+ 1 - (CTJWi,./)/2 
+ sin ej- 1,2et;j-U2 WTMT),,, - (CTMT),., - I )/2 

- (ll(riA@) * I@ sin Cj+ v2IJTi,/+ I - JTt,,l 

- (0 sin u)r,j- v2 I JTl,j - Jr,./- 11 I / 

+ V/r2A~)l~Ti,j+ 1 - PTi,/-11. 
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If sin 0, = 0, then 

OTij = 2/(r,de) * { [+((CTMT)i,j+ 1 - (CTMT)i,j .I) 

- &tit,+ I/2 (CcTMT)i,j+l - CcxM~i.j) 

+ ct i,, -. ,,I2 ((CC7-MT),,j - (CTMT),,;- 1) 

- (l/r,Ae)l~i.iJ. 1/21JTi.j-1 -JTi.j] 

-Oi.j- *;2~Jri.j-JTi.j-~Iil 

+ (1/2riAe)(PTi.j+ 1 - PTi,j .I]. 

&r, = At/2ri A2lUri.j + Urir;.jj. 

Et f = At/2r, Ae[vti,, + cti.jc, 1. 

The Jacobian has a block tridiagonal structure for eiiher the r or 0 sweep. Terms 
involving ur, ct, 7’. p, X,., X, in the Jacobian are related to the conservative variables 
in @ by the chain rule. 

APPENDIX C: TEMPORALTRUNCATION ERRORS 

The time marching scheme considered is the trapezoidal rule of maximum order 2. 
Even though the amount of implicitness is controlled by the parameter 0, an exact 
second-order scheme could still give rise to destabilizing truncation errors from the 
higher-order terms. Following Rivard et al. [4,5], a small controlled amount of 
positive numerical diffusion is retained to counter any instabilities from the neglected 
higher-order terms and the negative diffusion terms are cancelled. No attempt was 
made to control the dispersion errors. 

Because the Bow is known to be subsonic, all terms greater than O(u’) are 
neglected. The temporal truncation terms which were considered are listed as: 

AfV.[Vp+u(V.m)+u.Vm-uu.Vpl (mass), 

(2@- qg& C202- l) At f’ . (uu . Vp” + (p”/p)!Vp + II. Vm 

+u(V~m)-ull.Vp]J (species), 

(20- l)$$ =(2@-I)$ 
[ 
v* {2uVp+2uu.vm+uu(V.m)+...j 

+(y-1)V ~yu~Vt~+(~~/p-Q$-Qd) (V.m) 

-u . (u . Vm) + .*a II (momentum), 
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(2@- I)~!%~(za- I)$ [v. jy2”“. Vc+(;,- l)$Q 

+.i(y+2)$u(V.m)+7~(u.v~) 

-~~+l);“u.v/l f... 
1 1 

(energy), 

where 

p= (;,- l)(e - i(m a u)}. 

Although many of the terms are positive, the velocity vector and tensor, u and uu, 
may be negative depending upon the sign of the velocity components. For the two- 
dimensional spherical droplet problem with azimuthal symmetry, the operators are 
given by 

- ? 
v,pi+$-& 

r I 

V’ = J& (r2)F’ + &&(sin O)& 

where 

The truncation error terms which involve mixed derivatives are treated explicitly 
and are lumped into the source terms. The radial and tangential derivatives are 
treated implicitly during the appropriate AD1 sweep. After expanding the vectors, 
tensors, gradients, and divergences, the process of accounting for either positive or 
negative diffusion is straightforward but tedious. 

APPENDIX D: NOMENCLATURE 

‘Pi 

A 

B 

the pre-exponential Arrhenius coefficient corresponding to the ith 
chemical reaction I 

the Jacobian matrix of the pressure and convective terms with respect 
to the conservative variables along the x-coordinate 
the Jacobian matrix of the pressure and convective terms with respect 
to the conservative variables along the y-coordinate 
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CFL condition the Courant-Friedricks-Levy stabiiity criterion for sound wave 

FDE 
G 

J 
.i 
JXX 
JY., 
K 
L 
mr 
M; 
mt 
N 

GDE 

0G.V 

P 
PDE 

&hem 
R 
dj 
r 
s 
T 
i 
U 

propagation in explicit hyperbolic equations, i.e., At < x/(c + / i( I,,,) 
specific heat at constant pressure (cal g- r Km ‘) 
specific heat at constant volume (cal g- ’ K - ‘) 
multicomponent diffusion coefftcient (cm” see-’ j 
Arrhenius activation energy of ith chemical reaction (ca! mole I) 
a column vector denoting the homogeneous form of the convective 
and pressure terms in conservative form for the fluxes along the s- 
coordinate 
finite difference equations 
a column vector denoting the homogeneous form of the convective 
and pressure terms in conservative form for the fluxes along the ;:- 
coordinate 
gravitational acceleration (cm set *) 
index subscript denoting the position xi along the x-coordinate 
number of iterations required for convergence by the iterative block 
implicit scheme 
number of iterations required for convergence by the ICE-like scheme 
number of iterations required for convergence by the decoupied 
Crank-Nicholson schemes 
Jacobian matrix 
index subscript denoting the position yj along the y-coordinate 
column vector denoting gradients along the x-coordinate 
column vector denoting gradients along the y-coordinate 
degrees Kelvin 
number of coupled conservation equations 
pu,--momentum component in radial direction 
molecular weight (g mole- ‘) 
pu,--momentum component in 6 direction 
number of spatial divisions along a coordinate axis 
superscript corresponding to the nth time step 
ordinary differential equations 
the combined convective and diffusive transport operator along either 
the x- or y-coordinate 
pressure (atm or g cm- ’ set-I) 
partial differential equations 
total rate of chemical enthalpy production (cal cm -3 set .-‘) 
ideal gas constant (cal mole-’ K- ‘) 
rate of production or disappearance of the ith species 
radial distance in spherical coordinates (cm) 
column vector of the source terms 
absolute temperature (Kelvin) 
time (set) 
gas velocity component along X(T) axis 
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gas velocity component along y(B) axis 
column vector representing the total transport by convection and dif- 
fusion 
spatial distance in Cartesian coordinates along x-axis (cm) 
spatial distance in Cartesian coordinates along y-axis (cm) 
upper bound of the norm of the inverse of the Jacobian 
upper bound of the norm of the iterative correction vector 
ratio (=c,,/c,) of specific heats 
finite difference increments of x, J’, and t 
iterative correction vector 
a dimensionless constant which varies the relative contribution of the 
central and upwind difference operators in spatial differencing of the 
convective terms 
the column vector of the L dependent variable 
a component of the solution vector corresponding to the time t” and 
the location xi and yj 
a dimensionless constant of Powell’s algorithm 
a linear matrix 
the eigenvalues of the matrix A 
a dimensionless constant of Powell’s algorithm 
total gas density (g cm - ‘) 
gas density of the ith species (g cm-“) 
3.14159... 
summation operator 
generalized diffusion coefficients 
thermal conductivity (cal cm’ set-‘) 
a dimensionless constant which varies the degree of implicitness 
angular displacement in spherical coordinates 
norm of the Hessian matrix 
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